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Family data teamed with the transmission/disequilibrium test (TDT), which simultaneously evaluates linkage and
association, is a powerful means of detecting disease-liability alleles. To increase the information provided by the
test, various researchers have proposed TDT-based methods for haplotype transmission. Haplotypes indeed produce
more-definitive transmissions than do the alleles comprising them, and this tends to increase power. However, the
larger number of haplotypes, relative to alleles at individual loci, tends to decrease power, because of the additional
degrees of freedom required for the test. An optimal strategy would focus the test on particular haplotypes or
groups of haplotypes. In this report we develop such an approach by combining the theory of TDT with that of
measured haplotype analysis (MHA). MHA uses the evolutionary relationships among haplotypes to produce a
limited set of hypothesis tests and to increase the interpretability of these tests. The theory of our approach, called
the “evolutionary tree” (ET)–TDT, is developed for two cases: when haplotype transmission is certain and when
it is not. Simulations show the ET-TDT can be more powerful than other proposed methods under reasonable
conditions. More importantly, our results show that, when multiple polymorphisms are found within the gene, the
ET-TDT can be useful for determining which polymorphisms affect liability.

Introduction

Linkage and association between disease status and
marker alleles can help pinpoint a liability locus that
affects a complex disease or phenotype. To circumvent
spurious associations arising from population hetero-
geneity, Falk and Rubinstein (1987) proposed using the
alleles transmitted from parents to their affected off-
spring as case observations and using untransmitted al-
leles as control observations. From their insight evolved
the transmission/disequilibrium test (TDT) (Spielman et
al. 1993). For families containing affected offspring,
such as affected sib pairs with parents, the TDT uses the
distribution of marker alleles within and among families
to test for linkage and association while controlling for
population heterogeneity (Ewens and Spielman 1995).
The power of the TDT in this setting has been amply
demonstrated by the original analysis of insulin-depen-
dent diabetes mellitus and a 5′ flanking polymorphism
of the insulin locus (Spielman et al. 1993) and by sub-
sequent power analyses (e.g., Risch and Merikangas
1996; Knapp 1999). For these reasons, the TDT and
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allied tests have become a favorite tool for analysis of
genetic linkage and of association in complex diseases.

A stringent requirement of the original TDT is the
definitive transmission of alleles from parents to off-
spring. Therefore, for a single marker, at least one parent
must be heterozygous. Even then, transmissions may not
be obvious when parents and offspring are all hetero-
zygous for the same biallelic marker. To increase defin-
itive transmissions, several authors have proposed TDT
tests using haplotypes (e.g., Lazzeroni and Lange 1998;
Merriman et al. 1998; Clayton and Jones 1999; Clayton
1999; Rabinowitz and Laird 2000; Zhao et al. 2000).
In all but the most extreme case of absolute association,
transmissions from parents to offspring are more in-
formative for haplotypes than for single markers. One
trade-off, however, is the increase in the degrees of free-
dom of the test: in general, for M realized haplotypes,
the tests follow a x2 distribution, having df underM � 1
the null hypothesis of no linkage or association.

Because of the trade-off between the informativeness
of genetic transmission and the increase in degrees of
freedom, it is unclear, a priori, whether single-locus or
haplotype-based approaches are best. Ideally there
would be some way of focusing TDT-type tests on par-
ticular haplotypes or sets of haplotypes, thereby in-
creasing both the power of the test and the informa-
tiveness of transmissions. There are many ways to group
haplotypes. For example, Clayton and Jones (1999) sug-
gest limiting the number of parameters by using a ran-
dom-effects model.



Seltman et al.: TDT Meets MHA: the Evolutionary Tree-TDT 1251

Figure 1 Genealogy of a sample of haplotypes, showing time intervals between coalescent events. Superimposed on this evolutionary
process are the mutations that lead to the polymorphisms under study (unfilled diamonds) and the disease polymorphism itself (filled diamond).
Notice that a haplotype possesses each mutation that preceded it in the evolutionary process.

A relatively unexplored method of grouping haplo-
types, at least for TDT-type analyses, is to exploit the
evolutionary relationships among them. Notably, for
both random (Templeton et al. 1987, 1988, 1992; Tem-
pleton and Sing 1993; Hallman et al. 1994) and case-
control (Templeton 1995) samples, measured haplotype
analysis (MHA) has been proposed and used as a means
of grouping haplotypes on the basis of evolutionary
relationships. To our knowledge, this option has not yet
been explored in the TDT setting. The guiding frame-
work of MHA is the cladogram, an unrooted tree of
haplotypes. This tree presumably mirrors, as closely as
is possible, the mutational process by which the current
array of haplotypes evolved.

To guide the grouping of haplotypes, we transfer the
ideas of MHA to family-based studies. After a clado-
gram has been established for the observed haplotypes,
one seeks clusters of haplotypes on the cladogram (i.e.,
clades) that share a common predisposition to disease.
This approach potentially increases the power of the
TDT test by presenting a reduced number of haplotype
groupings for use in testing the transmission-equilib-
rium null hypothesis. The haplotypes within a clade that
are associated with a statistically significant increase in
transmission rates are likely to contain functional DNA

sequence variations that have a direct impact on the
phenotype. These functional variations may involve the
polymorphisms defining the haplotype, or they may
simply be unmeasured polymorphisms in tight linkage
disequilibrium with these haplotypes. Thus, an impor-
tant advantage of MHA is that the structure of the
“associated” portion of the cladogram directs the search
for undetected, causal polymorphisms, as well as pro-
viding clues to the potential causal effects of the poly-
morphisms comprising the haplotypes.

In this report, we develop the evolutionary tree
(ET)–TDT in two settings: when haplotypes can be de-
termined with certainty and when they cannot. For the
latter setting, we adapt many of the results of Clayton
(1999). Clayton’s methods use the population haplo-
type frequencies to estimate the missing haplotypes via
a partial-likelihood argument. The approach has been
shown by simulations to be insensitive to violations of
modeling assumptions (Cervino and Hill 2000).

Background

The evolutionary history of a sample of haplotypes can
be represented by a coalescent process joining individuals/
haplotypes to most-recent common ancestors (MRCA)
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Figure 2 Cladogram of haplotypes from the genealogy depicted
in figure 1. The founder is labeled as A, and, working from the root
of the tree onward, each new form of haplotype is labeled in the order
of occurrence of marker mutations (see open diamonds in fig. 1) to
obtain haplotypes B–L.

Table 1

Haplotype Structures and Relative Frequencies from
Hallman et al. (1994)

HAPLOTYPEa

MARKER

Frequency1 2 3 4 5

A 1 1 1 1 1 .180
B 0 0 1 1 1 .214
C 1 1 0 1 0 .194
D 0 0 1 0 1 .100
E 1 1 0 1 1 .277
F 0 1 0 1 1 .006
G 0 0 0 1 1 .014
H 1 1 1 0 1 .006
J 1 1 0 0 1 .004
K 0 1 1 1 1 .006

a The frequency of haplotype K was set at .006, and hap-
lotype I was removed from the table for reasons explained in
the original report.

in the distant past (Kingman 1982); see Hudson (1990)
for a general description of the “coalescent.” Templeton
et al. (1987) note that the disease mutations are embed-
ded in the coalescent process. Figure 1 provides a heu-
ristic example. The nodes at the bottom of the figure
represent the current sample of haplotypes, and each
node in the tree indicates the MRCA of the lineages
beneath them. Superimposed on this evolutionary pro-
cess, the population of haplotypes experiences mutations
that lead to the polymorphisms under study (open di-
amonds) and the disease polymorphism itself (closed di-
amond). A haplotype possesses each mutation that pre-
ceded it in the evolutionary process.

In this particular example (fig. 1), assuming the causal
mutation is not measured, 11 distinct haplotypes are
observed in the sample: the MRCA of all the haplotypes
(founder) and the 10 new haplotypes created by the 11
depicted mutations. Label the founder as A, and, work-
ing from the root of the tree onward, label each new
haplotype in the order of occurrence of marker muta-
tions to obtain haplotypes B–L; notice that B is not
observed in the extant population. With this one ex-
ception, each observed haplotype can be connected to
another that differs by a single mutation. Three of the
haplotypes (A, H, and J) have the disease mutation em-
bedded in their history, but the remaining seven do not.
If there were no other disease mutations in this chro-
mosomal region, these seven haplotypes would share a
common probability of being associated with a disease
outcome, and the three haplotypes bearing the disease
mutation would share a different common probability.
Notice the scenario would become more complex if the
third marker mutation from the founder were not mea-

sured: in this case, D merges with A, and some of these
haplotypes do not have the disease mutation; hence, on
average, the relative risk of this haplotype is lower than
that of the other two mutation-bearing haplotypes (H
and J).

If the time at which the mutational events occurred
is ignored, the remaining information contained in the
rooted tree (fig. 1) emerges as an unrooted tree called
a cladogram (fig. 2), with edges representing mutations
that result in new haplotypes. Such a cladogram can be
reconstructed from a sample of haplotypes, using the
method of maximum parsimony, as implemented in the
computer program PAUP (Swofford 1998). The parsi-
mony algorithm finds the unrooted tree that connects
the observed haplotypes, while using the minimum
number of mutations. Although the method of parsi-
mony does not use the frequency of the haplotypes in
the sample, it has been found to be a robust and effec-
tive tool for reconstructing evolutionary relationships
(Swofford et al. 1996).

To understand the impact of apolipoprotein B (apo
B) polymorphisms on cholesterol, Hallman et al. (1994)
studied the evolutionary relationships among a set of
apo B haplotypes (table 1), as determined by maximum
parsimony (fig. 3). We use these data and the cladogram
throughout this report. Each haplotype in the clado-
gram is separated by a single mutational step, and, with
the exception of haplotype K, uncommon haplotypes
appear at the external nodes. The five loci measured in
this study are in tight linkage disequilibrium (see table
5 of Hallman et al. [1994]), suggesting that recombi-
nation in this region is rare.

The cladogram in figure 3 has been divided into sub-
groups (clades) by the algorithm of Templeton et al.
(1987). The individual haplotypes (C, D, F, G, H, and
J), occurring as leaves (terminal nodes) on the tree, rep-
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Figure 3 Cladogram of haplotypes from Hallman et al. (1994),
as presented in table 1. Subdivisions of the cladogram were produced
by the algorithm of Templeton et al. (1987). Zero-step clades are
labeled A–K; one-step clades are labeled I, II, and III; and two-step
clades are labeled L and R.

resent zero-step clades. Clades I, II, and III represent
one-step clades, produced by moving backward one mu-
tational step from the zero-step clades toward internal
nodes to produce clusters of haplotypes. When this pro-
cedure is repeated, the one-step clades cluster to produce
the two-step clades L and R. In the final step, these two
clusters are combined to form a single three-step clade.

We adapt the cladistic approach for family-based as-
sociation analysis. Our adaptation, the ET-TDT, pro-
vides some additional power, compared with standard
tests for evolutionary scenarios similar to that depicted
in figures 1 and 2. As illustrated later in this report,
there are some evolutionary scenarios for which one
loses some power. Nonetheless, like MHA itself, the
most important feature of ET-TDT is its ability to guide
the search for mutations that directly affect liability to
disease.

For the ET-TDT, suppose the cladogram has M nodes,
each having a distinct bk that measures the relative risk.
Instead of conducting an omnibus test (TDTall) with

df, the cladogram delineates a set of sensibleM � 1
comparisons for equality among haplotypes. We will
call the rules that describe the set of tests the “clado-
gram-collapsing algorithm”—even though it is the pa-
rameters associated with a clade, not the nodes of the
cladogram, that are collapsed to a common value. The
objective of the cladistic approach is to find the most
parsimonious model that is consistent with the data. If
the disease is not linked to or associated with any of
the measured haplotypes, then the cladogram-collapsing
algorithm should declare that every haplotype has the
same relative risk.

We describe the cladogram-collapsing algorithm in
the context of the cladogram in figure 3. At any step in
the algorithm, a “full model” is required. This is the
model from which a score test, which will be described
in the following sections, is derived. The full model is
the same within each step, but it changes between steps,
depending on results in the previous step.

Zero-Step Clade

Begin with a full model that has distinct parameters
at nodes A–K ( ; fig. 3). Test whether any of theM p 9
zero-step clades has relative risk equal to the nearest
internal node; for example, test . Each of the sixb p bC E

tests so defined has 1 df, and each is performed inde-
pendently. For example, suppose that all the nodes in
clade I, except C, have equal bs, and suppose that both
of the nodes in clade II have equal bs and that the nodes
(B and G) in clade III have equal bs.

One-Step Clade

Next, with conditions based on the previous results,
the new full model sets the appropriate parameters as
equal (a reduction to in our example). Test forM p 6
equality of the parameters associated with the one-step
clades within the two-step clades (L and R). In our ex-
ample, clade (J, E, F) is compared with clade (A, H),
and clade (G, B) is compared with clade K.

Two-Step Clade

The new full model constrains bs to be equal within
any two-step clade remaining from the previous step.
For example, assuming the null hypothesis has not been
rejected in either of the two tests in the previous step,

. Next, test the equality of the parameters asso-M p 4
ciated with the two-step clades; that is, consider col-
lapsing (J, E, F, A, H) with (G, B, K). If this reduction
is not rejected, then the final cladogram has three distinct
sets of parameters: a distinct b is associated with each
of the following: clades C, D, and (A, B, E, F, G, H, J,
K). Notice that in the process of moving through the
cladogram, nine 1-df tests were conducted, rather than
a single 9-df test.

ET-TDT Analysis with No Missing Data

We initially develop the method assuming no data are
missing, which is our shorthand for completely specified
transmission of haplotypes from parents to offspring,
and then extend it to the typical situation in which
parental genotypes and/or haplotype-phase information
are missing. The first step of the analysis is to construct
a cladogram from the parental haplotypes. The next step
is to conduct a series of hypothesis tests to discover the
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most parsimonious set of parameters consistent with the
cladogram and the data.

Assume that the data consist of parent/affected off-
spring trios, with known haplotype phases. Suppose
that M distinct haplotypes are observed in the sample.
Define nij as the number of heterozygous parents with
the haplotype pair (i, j). The transmission data may be
recorded as , the number of times that a parent withxi/j

haplotypes (i, j) transmits i to the affected offspring. By
conditioning on the nijs, it follows that X ∼i/j

, and all binomials are in-binomial(n ,p ) M(M � 1)/2ij i/j

dependent of each other. The s can be parameterizedpi/j

by free parameters,M � 1

bie
p p ,i/j b bi je � e

with the Bradley-Terry model (also known as the “gam-
ete-competition model”; Sinsheimer et al. [2000]). For
biallelic markers, this parameterization is equivalent to
Terwilliger and Ott’s (1992) haplotype relative-risk
parameterization.

When no data are missing, the full likelihood from
each family trio is expressed as the probability of ob-
serving the parental haplotypes multiplied by the con-
ditional probability of the offspring’s haplotypes, given
the parental haplotypes: . If the corre-(F) (P) (C)L p L # L
sponding log-likelihood contributions are denoted by l,
the log likelihood decomposes additively: (F) (P)l p l �

. As noted above, for each family, corresponds(C) (C)l L
to a Bernoulli random variable that depends only upon
b. Pooling the data from all mating types results in a
likelihood composed of a product of independent bi-
nomial random variables.

The parental likelihood, L(P), is obtained assuming
that the haplotypes are approximately in Hardy-Wein-
berg equilibrium with haplotype relative frequencies

. Thus, the probability that a parent drawn at randomwi

from the population with genotype isg p (i,j)

2w if i p jiPr [g p (i,j)] p .{2w w if i ( ji j

In a population of cases, the corresponding haplotype
relative frequency is . Notice that the∗ b bi jw p w e /� w ei i j j

likelihood contribution obtained from observing the
haplotypes of the parents, L(P), also contributes infor-
mation about b, but this information is confounded
with the haplotype frequencies in the population. Thus,
when no data are missing, inferences robust to popu-
lation stratification are traditionally based on L(C) only.
Detailed expressions for the likelihood of a trio are given
in Appendix A.

In this analysis, we assume that (1) the relative risk
of a genotype is adequately modeled by the product of

haplotype effects and (2) the cladogram can be cor-
rectly inferred. Implicit in the second assumption is
the requirement that recombinations between markers
are rare, so that the history of the haplotypes can be
described by a mutation tree. This assumption is not
unduly restrictive; in general, only if the region is in
tight linkage will there be substantial association be-
tween haplotypes and an embedded disorder-associated
mutation. In our simulations, we we examine the ro-
bustness of our inferences to violations of the second
assumption.

With the cladistic approach, external clades are com-
pared with internal clades to determine whether the two
have equal risk. Let S and T represent the internal and
external clades, respectively. To test , we developb p bS T

a score test, which is described in Appendix B. To test
this hypothesis, we require estimates of the remaining
bs, which are obtained by maximizing the likelihood
under this constraint.

For a cladogram with M nodes, we suggest conduct-
ing score tests, each with 1 df, following theM � 1
cladogram-collapsing algorithm. (Recall that it is the
parameters, not the haplotypes themselves, that are col-
lapsed into common clades. A parent with two distinct
haplotypes within a common clade is still considered to
be heterozygous.) The procedure terminates when no
further reductions are possible for a given significance
level of . If the cladogram-collapsing proce-a/(M � 1)
dure results in a cladogram that possesses K 11 distinct
parameters associated with the clades, then conclude
that a disease-susceptibility locus is likely to be embed-
ded within the region under study and that the dele-
terious allele is likely to be associated with the clade(s)
exhibiting higher estimated levels of risk. We note, how-
ever, that these conclusions are only valid if the sample
size for each haplotype is sufficiently large. Uncommon
haplotypes may invalidate the asymptotic results; see
the section entitled “ET-TDT Analysis with Missing
Data” for a discussion of the estimation of the clado-
gram and the treatment of uncommon haplotypes. For
small samples, we recommend that a permutation-type
test be conducted to obtain P values (e.g., Morris et al.
1997). Generate N data sets, each using the following
algorithm:

1. Generate an offspring from each parent pair under
the null hypothesis.
2. Repeat the set of cladistic hypothesis tests outlined
above, and let , where pi is the∗p p min {p , … , p }1 M�1

P value associated with the ith test performed in the
cladogram-collapsing algorithm.
3. Compute the empirical P value by counting the frac-
tion of simulated realizations, , smaller than∗ ∗{p , … , p }1 N

the realized : P .1∗ ∗ ∗p p � I{p ! p }obs j j obsN
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ET-TDT Analysis with Missing Data

We now extend the methods to account for ambiguity
of haplotypes, which we refer to as the “missing-data”
case. We assume that, from each family, one affected
offspring is sampled along with parents and/or some
siblings (parents and siblings may be unaffected or of
unknown status). Multiplex families can be analyzed
with our methods, but they substantially complicate the
likelihood (Clayton 1999). For our purposes, then, ad-
ditional siblings of unknown or unaffected status will
be used only to help infer the missing information about
the haplotypes of the parents.

To generalize the ET-TDT for missing data, we follow
Clayton (1999) by formulating a partial-likelihood
model. In this instance, the full likelihood no longer
factors into two components: the likelihood attributable
to parental haplotypes, L(P), versus the likelihood of
transmission of haplotypes to affected offspring, L(C).
Although the primary inferences will be based upon L(C),
multiple configurations of haplotypes can be consistent
with the observed data for a trio. L(P) is now needed to
weight the likelihood over this set of plausible haplotype
configurations. Clayton’s partial-likelihood approach
represents a robust and powerful compromise between
using the full likelihood and using only those families
with no missing data (Cervino and Hill 2000). Although
this method has some potential for bias under extreme
population admixture, it is clearly superior to either
of the two options just mentioned, both of which are
biased.

For incomplete data, the ith family may be consistent
with a set of possible haplotypes and transmissions,
each giving a different likelihood contribution. If the
observed data from the ith family are consistent with a
set of scenarios Pi, the score is obtained as a weighted
average of particular scenarios consistent with Pi. De-
tailed expressions for the score test are given in Appen-
dix C.

Summary of the Test Procedure

1. Estimate the cladogram and collapse sparse nodes
into neighboring nodes so that no node is uncommon.
M refers to the number of nodes remaining after this
collapse.

2. Organize the cladogram by clades, using the Tem-
pleton et al. algorithm.

3. Perform a score test for each potential collapse de-
termined by the cladogram-collapsing algorithm.

(a) Estimate the constrained-nuisance parameters
using the expectation-maximization (EM) algorithm
(Appendix D).

(b) Compute the score test (Appendix C).

(c) If P 1 , assume the parameters are equala/(M � 1)
for the two nodes (or clades).

4. Use the permutation procedure described in the
section entitled “ET-TDT Analysis with No Missing
Data,” to obtain a P value, with one modification.
For each iteration of the permutation procedure, ran-
domly select one consistent setting for the parents’
haplotypes from set P for each family with incomplete
data. Simulate the affected offspring, using the selected
parental haplotypes.

Constructing a Haplotype Cladogram

For some of the families, the haplotypes will be di-
rectly observable using the genotype-elimination algo-
rithm (Lange 1997). More of the haplotypes can be in-
ferred with a high degree of accuracy by use of Clark’s
(1990) algorithm, which infers uncertain haplotypes
from the set of observed haplotypes. We suggest that this
collection of haplotypes be used to build an unrooted
cladogram, using PAUP (Swofford 1998).

Next, the set of families with unresolved haplotype
configurations should be examined to determine whether
their multilocus genotypes are consistent with any pair
of haplotypes, each of which deviates from the nodes in
the cladogram by, at most, one step. Include all of these
nodes in the cladogram. Because these unambiguous
haplotypes have not been directly observed in the pop-
ulation, it seems safe to assume they are uncommon.
Hence, this somewhat arbitrary rule will have little or
no impact on the analysis. At this point, the multilocus
genotypes from virtually all families should be consistent
with subsets of haplotypes that constitute the cladogram,
and families that do not meet this condition should be
removed from the analysis. Assuming the data are highly
informative, the data set now has two features: (1) the
deduced cladogram includes all but the most uncommon
haplotypes from the population; and (2) all the families
are consistent with at least one subset of haplotypes in
this cladogram. If the data are only weakly informative,
the problem should be recast, as described in the Dis-
cussion, or haplotype analysis should be avoided.

Assuming that the cladogram includes the full set of
haplotypes, set and estimate w, using the EM al-b p 0
gorithm described in Appendix D. Collapse any nodes
that have very small expectation under the null hypoth-
esis—for example, any with . This rule differs2nw ! 10k

from the cladogram-collapsing algorithm in that the
pooled haplotypes are treated as a single haplotype. If
the cladogram is extremely complex, a liberal amount
of pooling will reduce the degrees of freedom in the test
and could enhance the power.

Two types of variability can cause errors in the esti-
mated evolutionary history of a set of haplotypes: sam-
pling error and evolutionary error. In sampling error, the
observed frequencies of the haplotypes differ from the
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frequencies in the population. Variability in haplotype
frequencies has little influence on the cladogram built by
the method of parsimony, because parsimony is affected
by haplotype frequencies only in the weakest sense. The
most obvious impact occurs when rare haplotypes are
missing from the sample. Rare haplotypes typically are
located at the external nodes of the cladogram; however,
in this case, they have little practical consequence, be-
cause they should be pooled with the nearest internal
node. If, by chance, an uncommon internal node is not
sampled, then parsimony typically imputes the missing
node to complete the graph.

Evolutionary error presents a much thornier problem,
which will be described in more detail in the Discussion.
At least two processes cause parsimony to inconsistently
reconstruct the true evolutionary relationships among
haplotypes: (1) a recombinational event early in history
that disrupts tightly linked alleles; and (2) convergent
evolution, a situation that may be expected if markers
or the disease gene undergo frequent, recurrent muta-
tion. Our methods condition on the reconstructed cla-
dogram and therefore assume it is the true cladogram,
because it would be difficult or impossible to account
for evolutionary error with standard statistical methods.
In the simulations in the next section, we investigate the
impact of evolutionary error.

Simulations

Data were generated using the haplotypes and relative
frequencies given in table 1. To test a range of evolu-
tionary scenarios, we considered cases in which all the
haplotypes within a clade associated with the disease
share equal risk level (eq), other cases in which there is
a gradient of risk levels within a clade (neq), incorrect
cladograms resulting from recombination (rec), and er-
rors in the reconstruction of the cladogram (clad). A
total of 14 models were explored, each named by the
symbols denoting the haplotypes associated with an in-
creased relative risk. For model “null,” none of the hap-
lotypes was associated with the disorder. The next seven
models mimicked an evolutionary history with a single
ancestral mutation and a correct cladogram: for model
C, only haplotype C was associated with the disorder
( ); for model BD-eq, haplotypes B and D werebCe p 1.7
associated with the disorder ( ); forb bB De p e p 1.6
model CE-eq, haplotypes C and E were associated with
the disorder ( ); for model KBDG-eq, allb bC Ee p e p 1.6
the haplotypes in clade R were associated with the dis-
order ( ); for model BD-neq,b b b bK D B Ge p e p e p e p 1.6

and ; for model CE-neq,b b bB D Ce p 1.6 e p 1.9 e p 1.7
and ; and for model KBDG-neq, ,b bE Ke p 1.5 e p 1.3

, , and . Two models were mo-b b bB D Ge p 1.5 e p 2 e p 2
tivated by two distinct ancestral mutations: in model
CBG-eq, haplotypes C, B, and G were associated with

the disorder ( and ); and inb b bC B Ge p 1.4 e p e p 1.6
model CBG-neq, , , and .b b bC B Ge p 1.4 e p 1.6 e p 2.0
Three models mimicked the case in which one haplotype
was created by recombination rather than a mutation:
for model DH-rec, haplotype H was generated by re-
combination between A and D, and D was associated
with the disorder ( and ); for modelb bD He p 2.0 e p 2.5
EFG-rec, haplotype G was generated by recombination
between B and E, and E was associated with the disorder
( ); and, for modelb b bE F Ge p 1.7, e p 3.0, and e p 4.0
BK-rec, haplotype K was generated by recombination
between A and B, and B was associated with the disorder
( and ). Finally, model KBDG-cladb bB Ke p 1.8 e p 4.0
simulated an incorrect cladogram; haplotype D should
have been placed on the cladogram as a leaf attached
to A instead of B, and , , andb bK Be p 1.3 e p 1.5

. Each data set consisted of 400 simplexb bD Ge p e p 2.0
families; one half of the families had two genotyped
parents, and the other half had only one genotyped
parent.

Because we had missing data, we used Clayton’s
TRANSMIT program to perform TDT tests for
power comparisons (Clayton 1999). We used two ver-
sions of the TDT test: the TDTall and the max-TDT
test (which tests X vs. not X for all designated haplo-
types, using a Bonferroni correction). With TRANSMIT
we analyzed only those nodes with haplotype frequen-
cies of �0.04, to avoid small cell counts. To compute
the ET-TDT test, the cladogram was taken to be given
as in figure 3 but with the following nodes collapsed
and relabeled to avoid analyzing any haplotypes with
extremely small counts ,N p (K, B, and G) P p

, and .(F, E, and J) Q p (A and H)
Two hundred data sets were generated under each of

the conditions considered. With the ET-TDT, we con-
sider the null hypothesis to be rejected if .∗p ! 0.05/4
In a power comparison, the ET-TDT was somewhat
more powerful than the TDTall test for many scenarios;
and in some cases, the difference was substantial (table
2). The relative power of the tests varied greatly by
cladogram structure. For model KBDG-eq, where the
entire clade has a common relative risk, ET-TDT had
a slight edge in the power comparison. However, ET-
TDT did not outperform the TDTall in two conditions
where only a portion of the clade was associated with
the disease (BD-eq and CE-eq). Other results were much
more promising than expected. For instance, although
KBDG-neq was comparatively harder to analyze suc-
cessfully than KBDG-eq, in models BD-eq and CE-eq,
creating a gradient of relative risks did not affect the
relative performance of the ET-TDT. Even for models
CBG-neq, DH-rec, and BK-rec—which were challeng-
ing because they had a configuration of haplotype ef-
fects that were not well supported by the clado-
gram—the power was greater for ET-TDT. This
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Table 2

Power of ET-TDT versus Two TDT
Approaches Described by Clayton (1999)

Model ET-TDT TDTall max-TDT

Null 4.0 6.5 3.8
C 82.0 69.0 74.5
BD-eq 62.5 71.0 61.5
CE-eq 69.5 73.5 63.5
KBDG-eq 81.5 78.5 68.5
BD-neq 75.5 81.0 70.5
CE-neq 68.0 73.5 61.0
KBDG-neq 80.5 85.0 75.5
CBG-eq 82.0 65.5 56.5
CBG-neq 76.5 63.0 54.5
DH-rec 77.5 73.0 78.8
EFG-rec 82.0 91.0 73.5
BK-rec 86.0 84.5 84.5
KBDG-clad 95.0 80.5 68.0

NOTE.—Each model is named by the sym-
bols denoting the haplotypes associated with
an increased relative risk with additional no-
menclature indicating cases in which all the
haplotypes within a clade associated with the
disease share equal risk level (eq); cases in
which there is a gradient of risk levels within
a clade (neq); incorrect cladograms due to re-
combination (rec); and errors in the reconstruc-
tion of the cladogram (clad)

robustness was not universal, however, as demonstrated
by the lower power observed for model EFG-rec.

Compared with max-TDT, ET-TDT was considerably
more powerful for most models. The most surprising
result occurred for model C, where ET-TDT exhibited
a substantial advantage in power. In addition, whenever
more than one haplotype was associated with the dis-
ease, the TDTall test was more powerful than the max-
TDT test, suggesting that the X-vs.-not-X collapsing of
haplotypes is nonoptimal for the type of scenarios often
envisioned to occur in cladistic analysis.

More noteworthy than the power differential, how-
ever, is the difference in interpretability. Let X–Y indi-
cate that clades X and Y are significantly different. Con-
sider model KBDG-eq and fully informative data: of
200 simulations, the cladogram collapsed to the correct
model (CPQ–DN) 157 times and to the null model 37
times. Of the remaining six simulations, the model col-
lapsed twice to (CPQ–D–N) and once each to (C–
PQ–DN), (CP–QDN), (CP–Q–DN), and (CPQN–D).
Thus, in nearly every case for which the method had
power to detect a deviation from the null, the resulting
collapsed cladogram guides the researcher to search for
deleterious mutations within the appropriate clade of
haplotypes.

With max-TDT, the output indicates only which hap-
lotypes are declared significantly different from the oth-
ers. For example, we might find (B), (B, E), (B, C, E),

(A, B), or any other subset of haplotypes are significant.
Upon closer inspection, if several haplotypes are sig-
nificant, it can be determined which appear to be del-
eterious and which are protective. However, in our sim-
ulation, we find 19 different patterns of significant
haplotypes from data generated under case 6, and no
pattern is dominant. Consequently, had two different
research teams investigated the same region, they would
have been likely to report different results.

Table 3 summarizes the results of the ET-TDT for the
14 models investigated. Although many collapses of the
cladogram are possible, the results are summarized into
categories. A fraction of the outcomes result in an es-
sentially correct cladogram, which is subdivided into
two levels, excellent or underinclusive. An outcome is
excellent if it is either the true cladogram or if haplo-
types with similar relative risk are pooled together. An
outcome is underinclusive if at least one of the haplo-
types with enhanced relative risk is identified, and others
are grouped with null haplotypes. The remaining, sig-
nificant outcomes are subdivided into two categories:
informative and noninformative. Informative outcomes
provide some guide for the discovery of liability alleles.
For example, consider model CBG-eq. The correct
cladogram, classified as excellent, is C–PQ–N–D. The
outcome CPQ–N–D is underinclusive, because it failed
to detect the enhanced risk associated with haplotype
C. Outcome C–PQ–ND is considered informative, even
though haplotype D is incorrectly grouped with null
haplotypes. Finally, outcome CPQN–D is considered
noninformative, because it provides no guidance about
which haplotypes are more likely to possess enhanced
risk. For many models, ET-TDT performs admirably
(table 3), essentially finding the correct cladogram for
a majority of the cases. Some models, such as DH-rec,
are inherently difficult to interpret. For example, be-
cause haplotype H is rare, it is pooled with A, and
therefore the majority of the outcomes are classified as
underinclusive.

Discussion

We present a method, which we call “ET-TDT,” to test
for excess transmission of haplotypes from parents to
affected children. The ET-TDT uses the framework of
the standard TDT for individual polymorphisms (Spiel-
man et al. 1993) and extends it to the transmission of
entire haplotypes. Several tests for excess haplotype
transmission are compatible with the TDT framework
(Wilson 1997; Lazzeroni and Lange 1998; Merriman et
al. 1998; Clayton 1999; Clayton and Jones 1999; Dud-
bridge et al. 2000; Rabinowitz and Laird 2000; Zhao
et al. 2000). The ET-TDT is distinguished by its use of
the evolutionary relationships among the observed hap-
lotypes, as depicted by the cladogram, to produce an
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Table 3

Summary of Collapses of the Cladograms for ET-TDT Based on the Simulations
Reported in Table 2

MODEL

CORRECT CLADOGRAM OTHER

Excellenta Underinclusiveb Informativec Noninformative Null

C 156 0 7 1 36
BD-eq 121 2 1 1 75
CE-eq 130 4 1 2 61
KBDG-eq 121 0 3 0 75
BD-neq 143 4 3 1 49
CE-neq 127 8 1 0 64
KBDG-neq 144 19 0 1 39
CBG-eq 14 94 49 0 36
CBG-neq 17 69 47 20 47
DH-rec 0 143 2 10 45
EFG-rec 2 94 50 18 36
BK-rec 106 0 51 16 27
KBDG-clad 88 44 58 0 10

a “Excellent” indicates that the outcome is the true cladogram or that haplotypes
with similar relative risk are pooled together.

b “Underinclusive” indicates that at least one of the haplotypes with enhanced relative
risk is identified, whereas others are grouped with null haplotypes.

c “Informative” indicates that the outcome provides some guide for the discovery of
liability alleles.

organized series of tests of differential transmission. The
goal of these tests is to group—on the basis of their
evolutionary relationships—haplotypes that have indis-
tinguishable transmission rates. Readers will recognize
immediately that the ET-TDT also inherits the concepts
of MHA (Templeton et al. 1987, 1988, 1992; Templeton
and Sing 1993; Hallman et al. 1994; Templeton 1995).

The key assumption of MHA is that “if an undetected
mutation with a phenotypic effect occurred at some
point in the evolutionary history of the population, it
would be embedded within the same historical structure
represented by the cladogram” (Templeton et al. 1987;
see fig. 1 and 2 in the present report). MHA has two
notable features: (1) the distribution of phenotypes
within the cladogram directs the search for causal poly-
morphisms, and (2) the evolutionary relationships can
be used to direct nested analyses to reduce the number
of comparisons, thereby increasing the power. MHA has
enjoyed success in identifying genes affecting liability
for coronary heart disease and other quantitative pheno-
types (e.g., Keavney et al. 1998), but it can also be used
in conjunction with standard case-control analyses
(Templeton 1995).

The sine qua non of MHA is the cladogram structure,
which is usually constructed using maximum parsimony
or maximum likelihood. Programs to develop these
cladograms are readily available (e.g., PAUP; Swofford
1998). Conditional on the cladogram, the procedures
for MHA are elaborated in detail in various reports
(Templeton et al. 1987, 1988, 1992; Templeton and
Sing 1993; Hallman et al. 1994; Templeton 1995).

Those articles describe how (1) to adjust for cladogram
uncertainty and the possibility of recombinant haplo-
types, (2) to assess phenotypic associations of individ-
uals who represent two haplotypes, (3) and to perform
permutation tests when parametric assumptions fail.

Because ET-TDT also relies on the cladogram, the
caveats for MHA extend to ET-TDT. Foremost among
these caveats, the estimated cladogram should reflect
the true evolutionary relationships among haplotypes
to the extent possible. Thus, recombination and gene
conversion in the region should be rare. When recom-
bination is common, linkage disequilibrium will be
small, and the evolution of haplotypes will not be re-
flected by the cladogram. As was recommended by Tem-
pleton et al. (1987), researchers will want to evaluate
the cladogram to determine whether this key assump-
tion is plausible. If it is not, the genomic region should
be examined to determine, a priori, whether subdivi-
sions of the region yield results congruent with the as-
sumption. There is no statistical penalty for this explo-
ration, because it involves no hypothesis test. In the
same way, recurrent disease mutations violate the key
assumption of ET-TDT, because the cladogram will not
represent the evolutionary process. In this case, how-
ever, we see no easy solution.

Haplotype uncertainty also has an impact on ET-
TDT. For haplotype uncertainty, our recommendations
follow Templeton et al. (1992), with some adaptations
of our own. We propose an algorithm, using Clark’s
(1990) method and the developing cladogram structure,
to infer parental haplotypes. When this algorithm is



Seltman et al.: TDT Meets MHA: the Evolutionary Tree-TDT 1259

used, only families presenting with highly unusual hap-
lotypes should be eliminated from the analysis. To ac-
count for families whose multilocus genotypes are com-
patible with various sets of haplotypes, we develop a
partial-likelihood model similar to that introduced by
Clayton (1999).

The simulations described in the present report eval-
uated the effect of haplotype and cladogram uncertainty
on the performance of the ET-TDT. Although uncer-
tainty clearly affects power, the test remains valid. For
the scenarios we examined, the decrease in power in the
face of uncertainty is not large. In fact, often ET-TDT
has greater power despite the uncertainty (table 2). In
addition, ET-TDT offers a distinct advantage over other
methods, namely, its potential for greater interpretabil-
ity and deeper inference. Ultimately, to identify liability

(or protective) alleles, researchers want to know what
haplotypes carry alleles imparting greater disease lia-
bility. Results of our simulation show that other infer-
ential methods, although powerful, often produce mis-
leading information about which haplotypes determine
liability. By contrast, when the evolutionary model is
correct, ET-TDT often yields the correct information
(table 3). Thus ET-TDT should be a valuable aid for
causal inference.
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Appendix A

The Likelihood

Consider a trio of father, mother, and child ( ) in which the child has the disease of interest. Thepq # rs r pr
penetrance for a child of multilocus genotype pr is . For any given trio with parentalPr (CD p 1FCG p pr) ∝ v vp r

genotype , the probability of disease in the child ispq # rs

{ }Pr (CD p 1FPG p pq # rs) p Pr (CG p gFPG) Pr (CD p 1FPG, CG p g) ∝ (v � v )(v � v ) .� p q r s
g

The marginal probability of disease in the child is

2
K�1

Pr (CD p 1) p Pr (CG p ij) Pr (CD p 1FCG p ij) ∝ w v .�� � i i( )
i j ip0

Combining these equations gives

w w w w (v � v )(v � v )p q r s p q r s(P)L ∝ Pr (PG p pq # rsFCD p 1) ∝ .2
K�1� w vi i( )ip0

The conditional probability of child pr, given that the child has the disease and the parents are , ispq # rs

v vp r(C)L ∝ Pr (CG p prFPG p pq # rs, CD p 1) ∝ .
(v � v )(v � v )p q r s

Therefore, the full likelihood is

(F) (P) (C) ∗ ∗L p L L p w w w w .p q r s
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Appendix B

Inference from L(C)

For the first step of the cladogram-collapsing algorithm, we wish to test whether an external node, T, has the
same risk as an internal node, S. L(C) is parameterized by M parameters, but only are identifiable. To ensureM � 1
identifiability, set . In addition, let . Under the reduced model , but, under the full model, d isb p 0 b p d d p 0S T

unconstrained. Split the vector b into two components: ), where consists of the remaining set of bs. Asub p (d,h h

one moves through the steps of the cladogram-collapsing algorithm, different nodes (clades) will take on the
parameter d.

Define , and let be the score vector, where i indexes the trios in the study. Similarly,(C) nu p �l /�b u p � u(i) i ip1 (i)

let J denote the matrix of negative second derivatives of �(C). For the purpose of conducting inferences, u and J are
naturally partitioned by (d,h). To test when is unknown, we require an estimate of these nuisance parameters,d p 0 h

which is obtained by maximizing the likelihood when . Call this constrained maximum .ˆd p 0 h0

The score for d evaluated at is approximately equal to . The score test, which�1ˆ ˆ(d p 0,h ) u (0,h ) ≈ u � J J u0 d 0 d dh hh h

is asymptotically under the null hypothesis, is of the form , where is also evaluated2 2 �1˜ ˜ˆx u (0,h )/V V p J � J J J1 d 0 dd dd dd dh hh hd

at .ˆ(d p 0,h )0

This test procedure reflects the formulas for the first step of the algorithm before any collapsing has occurred.
In general, we want to test whether , in which d is the parameter for haplotype(s) T, and the bub { b { d p 0T 0

parameter(s) for haplotype(s) S is (are) fixed at 0. Parameters correspond to the remaining haplotypesu u(b , … , b )1 R�1

clustered into clades, where each node within a clade is constrained to have identical relative risk. Let HiR � 1
represent the one or more haplotypes corresponding to for , so that may represent severalub i � {0, … , R � 1} bi Hi

parameters all constrained to be equal. Conversely, let represent the position of bi in bu for�1H (i) i �
. For convenience, define if . Note that is equal to the haplotype(s) T, and�1{0, … , M � 1} H (i) p �1 i � S H0

.�1H (i) p 0, Gi � T
If a trio has haplotypes, , then, using ,bipq # rs r pr v p ei

(C) u u u u u u� p log (v v ) � log (v � v ) � log (v � v ) p log (v v ) � log (v � v ) � log (v � v )�1 �1 �1 �1 �1 �1p r p q r s H (p) H (r) H (p) H (q) H (r) H (s)

and u(C), the score for the child likelihood is of the form

(C)��(C)u p p T � E ,ub i iui �bi

where is the number of times haplotype(s) is (are) transmitted to the child from among the four parentalT Hi i

haplotypes, and is the expected number of times haplotype(s) is (are) transmitted to the child.E Hi i

u u u uD v � D v D v � D v�1 �1 �1 �1 �1 �1 �1 �1iH (p) H (p) iH (q) H (q) iH (r) H (r) iH (s) H (s)E p � , (B1)i u u u uv � v v � v�1 �1 �1 �1H (p) H (q) H (r) H (s)

where and if and if . In summary, for , the contributionuv { 1 D p 0 x ( y D p 1 x p y i � {0, … , R � 1}�1 xy xy

of any given trio to is where both and are 0–2.(C)u T � E E Ti i i i i

To compute

2 (C)� �(C)J p � ,u ub b u u[ ]�b bi j

notice

2 (C) (C)� � �u �Eub ii� p � p � .u u u u�b b �b �bi j j j

This quantity can be determined by summing the derivatives of the separate contributions to Ei resulting from each
parent. Note that the only three possibilities are that one parent’s contribution to Ei is 0, 1, or of the form
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uvx ,u uv � vx y

the last occurring when and either or is equal to i.�1 �1 �1 �1H (x) ( H (y) H (x) H (y)
For the contribution(s) of any given trio toi,j � {0, … , R � 1}

(C)�ubi� u�bj

is (are) given here for the two haplotypes of either parent. This is then repeated for the other parent. Find i p
and . If , no change is made to J. If , calculate�1 �1H (p) j p H (q) i p j i ( j

u uv vi jv p ,u u 2(v � v )i j

where if p�S and if q�S. If neither nor , add v to Jii and Jjj and subtract v from Jij andu uv p 1 v p 1 p � S q � Si j

Jji. If one of the haplotypes is in S and the other corresponds to , the only change made to J is to adduvk

uvk

u 2(1 � v )k

to Jkk.

Appendix C

Inference with Missing Data

With missing data, we require an estimate of the hap-
lotype frequencies in the population. Define w pi

. We set to ensure identifiability. As ing gi je /� e g p 0j 1

the Appendix B, the dimension of the parameter space
changes as and are defined by the cladogram col-u ub h

lapsing algorithm. The set of nuisance parameters in the
model is expanded to . For , writeul p (h ,g) j � Pi

(C)�l(j)⎛ ⎞
u(C) �bub(j)⎛ ⎞

⎜ ⎟u p p .(j) (P) (P)u �l⎝ ⎠g(j) (j)⎜ ⎟
�g⎝ ⎠

The total partial score for the ith family is obtained by
taking a weighted average of the partial score obtained
for each consistent scenario:

(F)� L u(j) (j)
j�Piu p .P (F)i � L(j)

j�Pi

The total partial-score vector, , is obtained by summingu
the contributions over all families. For inferences, the
natural partitioning is . The matrix of neg-Tu p (u ,u )d l

ative second derivatives for a single configuration is

(C)J 0u ub b (j)J p .(j) (P) (P)[ ]J Jugb (j) gg(j)

As described by Clayton (1999), the corresponding term
for the entire set of allowable configurations for the ith
subject isPi

(F) (F) T� L J � L u (u )(j) (j) (j) (j) (j)
j�P j�Pi i TJ p � � u (u ) .P P P(F) (F)i i i{ }� L � L(j) (j)

j�Pi

Finally, . The variance of can be computedJ p � J ui P Pi i

empirically using . For infer-1T TV p � u (u ) � uui P P Ni i

ences, and are partitioned by .J V (d,l)
The standard arguments used to obtain the score test

for complete data also apply for partial-likelihood mod-
els. It can be shown that the score test for testing d p

in the presence of the nuisance parameter is0 l

2 ˆ ˜u (0,l )/V ,d 0 dd

where

�1 �1 T TṼ p V � J J V (J ) (J )dd dd dl ll ll ll dl

�1 �1 T T�J J V � V (J ) (J ) .dl ll ld dl ll dl
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The latter term is also evaluated at . As before,ˆ(d p 0,l )0

the score test is a 1-df test, which is asymptotically dis-
tributed as a under the null hypothesis.2x1

Expressions for u(C) and J(C) are given in Appendix B.
The score for the parental likelihood is of the form(P)u ,

where is the number of paren-(P) ∗u p N � 2w � 2w , Ng i i i ii

tal haplotypes equal to i. To summarize, for i �
, the contribution of any given trio to{1, … , M � 1}

is where is 0–4.(P) ∗u N � 2w � 2w Ni i i i i

The remaining terms,

2 (P)� �(P)J p � ,gg [ ]�ggi j

are simple to compute.

(P)�ug(P) ∗ ∗ ∗i [ ]J p � p 2 D (w � w ) � (ww � w w ) ;g g ij i i i j i ji j �gj

that is, regardless of the haplotypes present, each trio
contributes to , for∗ ∗ ∗ (P)2 [D (w � w ) � (ww � w w )] Jij i i i j i j g gi j

. Similarly,i,j � {1, … , K � 1}

2 (P)� �(P)J p � ,ugb u[ ]�g bi j

and

2 (P) (P)� � �u �g(P) ∗i ( )J p � p � p 2wug b iu u ui j �g b �b �bi j j j

K�1

( )� I k � H w v (w v )j k k i i[ ]( )I i � H w v kp0j i i

p2 � 2 ,K�1 2
K�1� w vk k

kp0 � w vk k( )kp0

for , , for each trio,i � {1, … , M � 1} j � {0, … , R � 1}
regardless of the haplotypes present.

Appendix D

Estimating Equations

To estimate the objective is to simultaneously solvel

for and such thatuh g

(C) (P)u p 0 and u p 0 . (D1)h g

Both equations depend upon and in the form ofug h

weights, . With an iterative, EM-algorithm approach,(F)L
these weights are taken to be fixed at the solution ob-
tained in the previous iteration. For the ith family, let

index one consistent haplotype configuration. Letj � Pi

and denote the parental haplotypes and let(p ,q ) (r ,s )j j j j

denote the offspring’s haplotypes for this config-(p ,r)j j

uration. Here, we describe the EM algorithm for ob-
taining the solutions to equation D1.

To estimate : let be the number of times hap-(j)g Nki

lotype k is observed in the parents, within the jth con-
sistent configuration. Set , where(m) (m)w p w v /� w vk k k j j j

is the estimate obtained from the mth step of the(m)v

algorithm. Given ( ), also obtained from the(m) (m)ˆˆd p 0,h ,g
mth step of the algorithm, solve:

∗(m) (m) ∗(m) (m) (j) ∗( )� w w w w N � 2w � 2wp q r s ki k kk k j j
j�Pi p 0 ,� ∗(m) (m) ∗(m) (m)� w w w wi p q r sj j j j

j�Pi

for .k p 1, … , H
To estimate : Let be the number of times hap-(j)h Tk

lotype k is transmitted to the offspring, within the jth
consistent configuration. For every node except those
involved in the hypothesis test solve:

∗(m) (m) ∗(m) (m) (j) (j)( )� w w w w T � Ep q r s k kj j j j
j�Pi p 0 ,� ∗(m) (m) ∗(m) (m)� w w w wi p q r sj j j j

j�Pi

where is the expected value (at the mth step of the(j)Ek

algorithm) under configuration j; see equation B1, Ap-
pendix B.
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